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i 
This work contains an dyt i ca l  description of Huygenvs Principle 

for an electromagnetic field in a moving isotropic, homogeneous and 

hear medium. By startmg with Maxwell-Midmvsld equations it is 

possible to construct a combined field equation in the manner of 

Bateman and Itoh. The resultant equation is then integrated with the 

aid of an appropriate dyadic Green's function which can be found by 

means of the operational method originally due to Levine and Mminger. 
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Introduction 

The electrodynamics of moving media has attracted much interest 

recently as a result of the work by Professor L. V. Boffi'l) of the Instituto 

Tecnologico de Aeronautica, and by Professor L. J Chu(2) of Massachusetts 

Institute of Technology. The relations between these new formulations and 

Minkowski's classical work were reviewed by this author in 8 recent article (3) . 
In this paper, we shall present an analytical description of Huygens' 

Principle for an electromagnetic field in a moving isotropic, homogeneous, 

and linear medium. The treatment follows very closely the technique 

developed previously for a stationary medium(4), A combined field equation 

is first constructed out of the Maxwell-Minkoweki equations. It is then 

integrated with the aid of an appropriate dyadic Green's function . (5) 

Maxwell -Minkow ski Equations 

The Maxwell 's equations for moving media have the same form as 

for stationary media. For harmonically oscillative fields with a time 

convention e'&, they are  

The relations between the field vectors for a moving isotropic medium were 

found by Minkowski(') based upon the special theory of relativity. They are  

- - -  1 - -  - -  
D +  7 v x H  I E ( E + v x B )  

Y 

C 

(3) 
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- - - -  1 -  v x E ~ ( H - v x D )  - -  

B -  2 
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where E and p denote, respectively, the permittivity and permeability of the 

medium at rest, which is assumed to be loseless. v and c denote, respectively, 
- 

the velocity of moving medium and the speed of light in vacuum. In the subsequent 

analysis, we assume 

A - 
v = V Z .  (5) . 

The above condition is not much of a restriction since a coordinate transformation 

of the result can easily take care of the general case. 
- - 

By solving and from ( 3 4 )  in terms of E and E with v given by 

(5) we obtain the following relations: 

where 

p = v/c  

i 
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Substitution of (6-7) into (12) yields the Maxwell-Minkowski equations 

for a moving isotropic medium. They are 

Integration ____- of the Maxwell-Minkowski Equations 

Equations (12-13) can be simplified by introducing two new field vectors 
- 
E and HI definedby 1 

then 

b 

Equations (12 -1 3), therefore, reduce to 

To integrate (18-19), we shall adopt the technique(4) previously developed for 

stationary media. Following Bal~rnan(~)  and Itoh we define a combined ( 8 )  

field vector 
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where 

1 or 

The sign ''+ - l", denoted by h, is used as a separation operator similar to 

2 or j in complex number theory. W e  adopt the rule the h = 1. By 

multiplying (19) b y r  and adding it to (18) one finds 

where 
1 - 
2 K jwrr =-hk; k = w ( p € )  e 

--1 Multiplying (22) by 5 , the reciprol of 5, and taking the curl of the 

resultant equation yields 

or 

where 
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Equation (25) is the wave equation for  the combined field vector F1. To integrate 

that equation, we introduce the dyadic Green's function which satisfies the 

differential equation: 

- -  
-k2 E = I d  (R/ R') ---1 =-J 

- -  - 
In (Z7), ? denotes the unit dyadic, and 6(R/ R'), the three dimensional delta function, 

The expression of for positive values of a is given in reference (5). The 

derivation is outlined in the Appendix. The expression of for negative values of 

a is also included. W e  consider now the vector function 

- 
Where b denotes an arbitrary constant vector. It can easily be verified that 

- -1 
0 

- -  - --I = - - - 0.;;; = f (z  g m b ) - F 1 ' b  b ( R / R ' )  (30) 

Applying the divergence theorem to (30) and simplifying the result, one f inds 

In the region of integration where there is no current source (31) reduces to 
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The surface integral evaluated at infinity contributes nothing because of the radiatinn 

we have 
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where 

J J  
S 

Since 

-- 
the expression for FIR) is therefore given by 

Equation ( 36) describes, in a compact analytical form, Huygem' Principle for an 

electromagnetic field in a moving medium. When ve separate the part without h, 

and the part with h, the following two equations are obtained 

7 



and 

RL 283 
10-21454 

1 

(37) 

s t  / 

Equations (36-37), of course, can be devided individually by considering the wave 

equation for E and H separately. In addition to its compactnesa, the use of a 
- - 

combined field vector eliminates a duplicate effort. 
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APPENDIX 

- - 
Derivation of g 

The explicit solution to which satisfies the equation 

can be found most convhent ly  by using the operational method originally due to 

Levme and Schwinger (9) . The first t e rm of (A. 1) can be decomposed into two terms, 

namely, 
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Taking the divergence of (A. 1) yields 
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kL 
. 1 

hence, (A. 1) may be written in the form 

~f one relates 7 with a scalar function g such that 

then g must satisfy the following equation: 

or 

The solution for g in an open region for positive values of a, corresponding to 

(A 4) 
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where 

When a is negative, corresponding to v > (v a (A.6) has the same form 

as the two-dimensional Klein-Gordon equation, The solution for g in this case 

(1 0) is given by 

where 

0 

The discontinuous behavior of g is a manifest of the Cerenkov phenomenon. 
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